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An algorithm combined with back propagation neural network (BPNN) and genetic algorithm (GA) was
used in the optimum design of the compositions of an advanced ZrO2/TiB2/Al2O3 nano-micro-composite
ceramic tool and die materials. GA was used to fully optimize the network topology, thresholds, and initial
connection weights of BPNN. The input parameters are the contents of each compositions of ceramic tool
and die materials and the output parameters are mechanical properties including hardness, flexural
strength, and fracture toughness. The compositions with optimum mechanical properties can be chosen for
materials preparation with less error and the result can be used to guide the experimental process. As a
result, the nano-micro-composite ceramic tool and die material with good mechanical properties was then
fabricated. It indicated that the algorithm can offer a robust and efficient way for the compositional design
of ceramic tool and die materials.
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1. Introduction

In recent years, ceramic tool and die materials such as
Al2O3, Si3N4, Sialon, etc. have got more and more applications
in the field of both metal cutting and plastic forming because of
their premium properties such as high hardness, wear resis-
tance, and heat resistance. However, the brittleness has limited
their further application. ZrO2 ceramics, with good physical and
chemical properties and excellent mechanical properties espe-
cially the fracture toughness, have become one of the research
hotspots in the field of ceramic materials. Especially in recent
years, researchers had fabricated the ZrO2/WC nanocomposite
ceramic material by hot pressing (HP) technique. The highest
flexural strength is 1551 MPa when the volume fraction of
WC is 20% (Ref 1, 2). While for the ZrO2/TiB2 composite
ceramic material with the content of 30% TiB2, the corre-
sponding hardness, flexural strength, and fracture toughness is
13-14 GPa, 1000 MPa, and 8 MPaÆm1/2, respectively (Ref 3).
Some researchers studied the mechanical properties of Al2O3-
15 wt.% ZrO2 ceramic composites. The fracture toughness and
flexural strength reached 932 MPa and 8.5 MPaÆm1/2, respec-
tively (Ref 4).

At present, the main research method for ceramic materials is
still the traditional ‘‘trial-error’’ method which needs a large
number of experiments to determine the optimum material
compositions. This traditional method requires researchers to
repeat experiments and to face to the complex preparation
processes as well as the high cost of the experiment, and so on.
Therefore, the utilization of advanced and even intelligent design
technologies for ceramic material design is extremely necessary.

The computational intelligence (CI) technique, as an
offshoot of artificial intelligence (AI), has provided an effective
way to solve some kinds of problems. It is a kind of heuristic
algorithm including three categories: neural network, fuzzy
system, and evolutionary computation. Genetic algorithm (GA)
and artificial neural network (ANN) are the two important CI
techniques.

In recent, the two kinds of techniques especially ANN have
got successful application in material design of ceramics, etc.
For instance, some researchers used ANN to predict the
functional properties of ceramic materials from compositions
(Ref 5), the bending strength and hardness of particulate-
reinforced Al-Si-Mg aluminum matrix composites (Ref 6), the
mechanical properties of ceramic tool (Ref 7) or the percentage
of alumina in Al2O3/SiC ceramic cakes and the pore volume
fraction (Ref 8), etc. ANN is a kind of self-learning technology
and back propagation neural network (BPNN) is one of the
simply and commonly used network architectures. BPNN is
based on the gradient descent method where connection weights
and thresholds are modified in a direction corresponding to the
negative gradient of a backward-propagated error (Ref 9).

Although BPNN has an advantage of high accuracy, it is
often plagued by the local minimum point, low convergence or
oscillation effects. Therefore, two problems still exist in the
application of BPNN. One is the determination of the network
topology, especially the neuron number in the hidden layer
without the guidance of theoretical formula. The other is the
problem of convergence accuracy, i.e., how to determine a
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reasonable number of hidden layer and hidden layer neurons to
achieve both the required accuracy and short-training time.

In order to overcome the disadvantage of BPNN, GA is
usually used for the optimization of BPNN. GA has a strong
searching capability and high probability in finding the global
optimum solution which is suitable for the early stage of data
searching. Although these two techniques seem quite different
in the number of involved individuals and the process scheme,
they can do a synergistic combination to provide more power of
problem solving than either alone (Ref 10-12). Therefore, many
researchers have attempted to combine the two algorithms
together in order to achieve the complementary advantages
(Ref 13, 14).

In this article, a combinational algorithm of BPNN and GA
is used for the compositional design of an advanced ZrO2/TiB2/
Al2O3 nano-micro-composite ceramic tool and die material.

2. Combinational Algorithm of GA and BPNN

The commonly used combination of GA and BPNN mainly
has three methods. One is using GA to optimize the network
topology of BPNN which is marked as GA-BP I here; the
second is using GA to identify the initial connection weight and
threshold which is marked as GA-BP II; while the third is using
GA not only to identify the initial connection weight and
threshold, but also to optimize the network topology of BPNN
which is marked as GA-BP III. Since the algorithm of GA-BP I
is the simplest algorithm with lower accuracy of prediction, the
latter two kinds of algorithms are further discussed in the
present study. Some successful examples of the combination of
GA and BPNN (GA-BP II and GA-BP III) have been reported
to optimize successfully the flow stress of 304 stainless steel
under cold and warm compression (Ref 15), the surface
roughness in end milling Inconel 718 (Ref 16) or the plasma
processes (Ref 17), etc. In addition, some researchers success-
fully used the BPNN and combinational algorithms to forward
and reverse mappings in green sand mold system (Ref 18) or
modeling of TIG welding process (Ref 19), the results both
show that combinational algorithm outperforms the BPNN.

2.1 The Algorithm of GA-BP II

BPNN is very sensitive to the initial vectors and different
initial values may lead to completely different results. Espe-
cially in the specific calculation process, the related initial
values are usually determined randomly or by experience. Once
the initial value is not properly determined, it will lead to the
effect of oscillation or seldom convergence. Even if it is
convergent, the process will be quite slow because of the too
long time of training or falling into local minimum. And the
best connection weight distribution cannot be achieved. Using
GA to optimize the connection weights and thresholds of
BPNN (GA-BP II) can solve the kind of problem.

The principle of the GA-BP II algorithm is as follows: using
GA to optimize the connection weights and thresholds of
BPNN from its searching space which contains all the available
individuals. Then, the BPNN is trained with these connection
weights and thresholds so that the difference between BPNN
actual output and target output can be reduced.

Most of the research literatures focus on the utilization of
various improved GA to train the connection weights and

thresholds of BPNN ignoring the importance of the network
topology and its close relationship with the network topology
and connection weights. In the present study, a combinational
algorithm of BPNN and GA (GA-BP III) is used for the
compositional optimum design of nano-micro-composite cera-
mic tool and die materials. In this algorithm, GA is used to fully
optimize BPNN including the comprehensive optimization of
the network topology, the initial connection weights, and
thresholds.

2.2 The Algorithm of GA-BP III

It is reported that the BPNN network topology can greatly
affect the network processing capabilities. Redundant nodes
and connections are not allowed existing in a good network
topology. However, the design of the network topology has not
rigorous and systematic theoretical guidance and remains
largely dependent on a person�s experience. Using GA to solve
the optimization problem of the network topology can be
transformed into the process of biological evolution that can be
obtained through the selection, crossover and mutation, etc.

According to the Kolmogorov theorem (Ref 20, 21), for
three-layer BPNN, it can achieve any given mapping. When the
number of the hidden layer neurons is enough, it can use any
degree of accuracy to approximate any nonlinear mapping. The
neurons in the input layer and output layer are determined on
the specific problem; only the number of neurons in the hidden
layer is variable. Thus, how to determine the number of the
hidden layer neurons has become a very important issue which
is the optimum object of the neural network topology. If the
number of the neurons in the hidden layer is too little, the
network may not be trained satisfyingly with the results, or
the network is not robust enough with the poor fault-tolerance.
Otherwise, they will make learning time too long and the error
is not necessarily the smallest. Hence, there exist an optimal
number of the hidden layer neurons.

It is assumed that the neural network is hierarchically fully
connected and only the neurons of two adjacent layers are
possible to be connected and must be connected. If the input
and output vector values are in the real number space and there
are no effects between the two connected neurons, the weight
of the two connected neurons will be zero. Under the known
condition of the input and output neurons, the number of the
neurons in the hidden layer can only correspond to the number
of the connection weight.

Thus, the principle of the GA-BP III algorithm is as
following: before the optimization, GA is used to optimize the
number of connection weights, the best connection weight and
threshold for BPNN from its searching space which contains all
the available individuals. After that, a global optimum solution
can be achieved. Then, the last generation of individuals is
decoded and the corresponding BPNN network topology, initial
connection weights, and thresholds can be achieved. With these
values worked as the BPNN network topology and the initial
value, samples can then be trained to obtain the final optimal
results. A flow chart of GA-BP III algorithm is shown in Fig. 1.

2.3 Process of GA-BP III Algorithm

2.3.1 Encoding. For the BPNN with n-d-m three layer,
where n is the number of neurons of the input layer, d is the
number of neurons of the hidden layer, and m is the number of
neurons of the output layer, the floating-point type numbers are
used for the connection weights and thresholds to be encoded.
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The encoding is linked together to be a long string by the
sequence of connection weights and thresholds. Then, the
length of the string is:

L ¼ n� d þ d þ d � mþ m ðEq 1Þ

The scope of d can be ascertained by the empirical formula
of the hidden layer neurons (Ref 22) given below:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

nþ m
p

þ a; ðEq 2Þ

where n and m can be determined based on the actual prob-
lem, a is a constant in the range of 1-10. Thus, once the
length of the string L is determined, the number of hidden
layer neurons and then the network topology of BPNN can
be determined. The individual values after decoding are the
corresponding connection weights and thresholds.

2.3.2 Determination of the Fitness Function. The rela-
tionship between the input and output of the network is
available as following (Ref 23):

Yk ¼
X

d

j¼1
Vjk � f

X

n

i¼1
Wij � Xi þ hj

" #

þ rk ðEq 3Þ

where f is the transfer function between layers, Xi is the actual
input of the neuron i of the input layer, Wij is the connection
weight from the neuron i of the input layer to the neuron j of
the hidden layer, hj is the threshold of the neuron j of the hid-
den layer, Vjk is the connection weight from the neuron j of the
hidden layer to the neuron k of the output layer, rk is the thresh-
old of the neuron k of the output layer, and Yk is the actual out-
put of the neuron k of the output layer. According to the error
between the actual output and the target output, the least-
squares error function E can be defined as (Ref 23):

E W ;V ; h; rð Þ ¼ 1

2p

X

p

q¼1

X

m

i¼1
Tq
i � Yq

ið Þ
2

; ðEq 4Þ

where p is the total number of training samples, Ti
q and Yi

q is
the target output and the actual output of the neuron i of the
input layer, respectively, when the qth training sample trains.

In order to integrate GA and BPNN, the fitness function of
GA is selected as following (Ref 23):

f ðW ;V ; h; rÞ ¼ 1

EðW ;V ; h; rÞ þ 1
ðEq 5Þ

In this way, once the outputs are available through the BPNN
computation, the related outputs are transferred to the fitness
function for the comparison and determination of the final
value. While the fitness are being updated from generation to
generation, a new generation of the population will be pro-
duced and do the same evaluation. When the fitness of the
population reaches the maximum, the output error of the net-
work becomes the minimum. This process will continue until
the end of predetermined generations.

2.3.3 BPNN Modeling. The hardness, flexural strength,
and fracture toughness are the main mechanical properties of
ceramic tool and die materials. When the processing techniques
are determined, the mechanical properties of ceramic tool and
die material are mainly decided by the compositions. Therefore,
the inputs of the neural network model are the contents of each
composition and the outputs are the three mechanical properties
of the given materials. Hence, the model has three output
neurons.

For the selected ZrO2/TiB2/Al2O3 nano-micro-composite
ceramic tool and die material, the BPNN model is then
established which has three input neurons (volume fractions of

Fig. 1 The flow chart of GA-BP III algorithm
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ZrO2, TiB2, and Al2O3, respectively) and three output neurons.
With the substitution of the number of neurons of the input
layer and the number of neurons of the output layer into Eq 1,
the string length is L = 3+7d. The scope of the number of
neurons of the hidden layer is then determined as 4-13
according to Eq 2. The sigmoid-type transfer function is
adopted for the input layer to the hidden layer and the linear-
type transfer function is adopted for the hidden layer to the
output layer.

3. Experimental

The nano-micro-composite ceramic tool and die material
ZrO2/TiB2/Al2O3 was fabricated with the vacuum HP tech-
nique. High purity nanometer-sized ZrO2 and micrometer-sized
TiB2 and Al2O3 powders were used as the starting materials
with average sizes of 39 nm, 1.5 and 1.0 lm, respectively.
According to the required volume fraction, the raw material
powders were blended. The mixtures were subsequently
homogenized with absolute alcohol media and polyethylene
glycol (PEG) in a ball mill for 48 h. After milling the slurry
was dried in vacuum and screened.

Samples were then formed by vacuum HP technique under
the HP temperature of 1445 �C, pressure of 30 MPa, and time
duration of 60 min. Sintered bodies were cut with a diamond
wheel into samples of 39 49 30 mm. The flexural strength
was measured in an electronic universal testing machine (model
INSTRON-5569) by means of the three-point bending method
with a span of 20 mm and loading rate of 0.5 mm/min. The
Vickers hardness was tested by the testing machine (model
Hv-120) with a load of 196 N and a holding time of 15 s. The
fracture toughness was determined by the indentation method.
The experimental data are listed in Table 1, where HE, rE, and
KICE is the experimental value of hardness, flexural strength,
and fracture toughness, respectively. The microstructure was
observed with environmental scanning electron microscope
(ESEM, model FEI-quanta 200).

4. Results and Discussion

4.1 Simulation Results of GA-BP III Algorithm

According to the principle of GA-BP III algorithm, the
corresponding computing process is programmed and run with

MATLAB 7.0 software. The corresponding parameters are set
as following: the initial population number N = 30, the cross
probability Pc = 0.8, the mutation probability Pm = 0.1, and the
error e = 0.001. When the error reaches the intended target, the
training process of BPNN will stop.

In the process of GA optimization, with the increase of the
evolution of generation, the fitness and sum-square error is
becoming convergent and finally achieves the best value,
respectively. At this stage, the corresponding connection
weights and thresholds of the neural network become the
optimum. Their individuals are decoded as follows: �0.33,
1.00, 0.00, �0.64, �0.09, 0.18, �0.61, �0.38, 0.13, �0.27,
�0.27, 0.91, �0.55, 0.72, 0.57, 0.33, �0.48, 0.36, �0.51,
�0.19, �0.19, �0.05, 0.13, �0.32, �0.52, 0.24, �0.78, 0.29,
0.39, 0.13, �0.46, 0.00, 0.00, 0.47, 1.00, �0.32, �0.59, 0.36,
�0.07, �0.40, �0.34, �0.28, �0.22, �1.00, �0.28, �0.61,
0.19, 0.49, �0.82, 0.00, 0.10, 0.52, 0.63, �0.48, 0.96, �0.89,
0.23, 0.11, �0.59. According to the string length L = 3+7d and
with the number of the above parameters as the string length
which is 59, the number of hidden layer neurons is ascertained
as 8. Therefore, the BPNN network topology is 3-8-3 and the
thresholds are the last 11 parameters in the decoded individuals
listed above. Some connection weights in the list above are
found to be 0.00 which indicates that the connection between
the two neighboring neurons is invalid.

The concrete network topology of GA-BP III algorithm is
shown in Fig. 2. It can be seen that the first neuron of input

Table 1 The training samples for GA-BP III simulation

Sample
number

Volume
fraction of

ZrO2 VZrO2 , vol.%

Volume
fraction of

TiB2 VTiB2 , vol.%

Volume
fraction of

Al2O3 VAl2O3 , vol.%
Hardness
HE, GPa

Flexural
strength rE, MPa

Fracture
toughness

KICE, MPaÆm1/2

1 90 5 5 10.03 618.91 9.76
2 85 5 10 10.20 501.29 10.59
3 80 5 15 10.36 508.86 9.95
4 85 10 5 10.37 616.81 10.51
5 80 10 10 10.71 612.05 11.37
6 75 10 15 10.19 564.78 12.20
7 80 15 5 9.82 512.95 7.86
8 75 15 10 10.22 523.92 7.91
9 70 15 15 10.14 520.36 8.11

Fig. 2 The BPNN network topology for GA-BP III algorithm
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layer and the third neuron of hidden layer is no connection. The
third neuron of hidden layer and the second and the third
neurons of output layer are also connectionless. The data within
the range of the experimental results are selected as the data for
prediction in order to get the optimum compositions corre-
sponding to the best mechanical properties. The predicted
results of GA-BP III algorithm are shown in Table 2, where HP,
rP, and KICP are the predicted hardness, flexural strength, and
fracture toughness, respectively. It indicates that the highest
flexural strength is 684.5087 MPa and the highest hardness is
10.7445 GPa with the corresponding volume fractions of
8 vol.% TiB2 and 7 vol.% Al2O3. The fracture toughness with
the same compositions is 10.3756 MPaÆm1/2 which is slightly
less than the best value 11.7215 MPaÆm1/2 when the volume
fraction of TiB2 and Al2O3 is 9 and 11%, respectively. While
the flexural strength and hardness with the latter compositions
is 567.6776 MPa and 10.7194 GPa, respectively. It suggests
that comprehensive good mechanical properties of the nano-
micro-composite ceramic tool and die material ZrO2/TiB2/
Al2O3 can be achieved when the volume fraction of TiB2 and
Al2O3 is 8 and 7%, respectively.

After about 100 generations of searching, the fitness and the
sum-square error has been stabilized, respectively, as shown in
Fig. 3. The curve of BPNN training target is shown in Fig. 4. It
indicates that the error can reach the predetermined goal only
after eight steps of iteration. The elapsed time is 129.939 s and
the mean square error (MSE) is 0.1491.

4.2 Experimental Verification and Discussion

According to the above simulation results of GA-BP III
algorithm, 8 vol.% TiB2 and 7 vol.% Al2O3 are chosen as the
optimum compositions since material with the ingredients will
have the best flexural strength, the best hardness, and better
fracture toughness. Then, ZrO2/TiB2/Al2O3 nano-micro-
composite ceramic tool and die material with the above

optimum compositions was prepared with the vacuum HP
technique described in Section 3. Mechanical properties
including flexural strength, hardness and fracture toughness
were also measured. The simulation results of standard BPNN
algorithm and GA-BP II algorithm are also achieved in order
for the comparison which is shown in Fig. 5. It indicates that
the error can reach the predetermined goal after 61 steps of
iteration. The corresponding MSE is 1.2390. For the GA-BP II
algorithm, after about 100 generations of searching, the fitness
and the sum-square error has been stabilized as shown in
Fig. 6. The curve of BPNN training target of GA-BP II
algorithm is shown in Fig. 7. It can be seen that the error can
reach the predetermined goal after 12 steps of iteration. The
elapsed time is 144.199 s and the MSE is 1.0483. Compared

Table 2 The predicted results of GA-BP III algorithm

Predicted
number

Volume fraction
of ZrO2 VZrO2 , vol.%

Volume
fraction of

TiB2 VTiB2 , vol.%

Volume
fraction of

Al2O3 VAl2O3 , vol.%
Hardness
Hp, GPa

Flexural
strength rp, MPa

Fracture
toughness

KICP, MPaÆm1/2

1 85 6 9 10.4052 581.2162 10.3338
2 85 7 8 10.6214 652.4133 10.2449
3 85 8 7 10.7445 684.5087 10.3756
4 85 9 6 10.6831 674.3180 10.4994
5 80 6 14 10.5760 525.4235 10.7261
6 80 7 13 10.6851 536.8278 11.2773
7 80 8 12 10.7196 547.2214 11.6317
8 80 9 11 10.7194 567.6776 11.7215
9 80 11 9 10.6646 661.8577 10.6589
10 80 12 8 10.4706 656.7249 9.9358
11 80 13 7 10.1025 590.1572 9.1546
12 80 14 6 9.8855 537.7169 8.3906
13 75 11 14 10.3267 539.3551 11.4096
14 75 12 13 10.4194 518.8999 10.5038
15 75 13 12 10.4649 509.9802 9.6927
16 75 14 11 10.4339 517.1729 8.9028
17 60 10 30 9.73674 566.5057 7.3339
18 60 15 25 9.74865 566.6555 7.2675
19 60 20 20 9.76026 566.9639 7.2397
20 60 25 15 9.05516 406.9483 7.0475
21 60 30 10 9.76318 506.0931 5.7454

Fig. 3 The curve of sum-square error and fitness of GA-BP
III algorithm
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with the above two algorithms, the GA-BP III algorithm has the
least number of iteration steps, shorter elapsed time and
smallest MSE.

Both the experimental data and the predicted data of these
three kinds of algorithms mentioned above are all listed in
Table 3 as well as the relative errors between the predicted and
experimental data. It can be seen that the two kinds of the
combinational algorithms of both GA-BP II and GA-BP III all
have better prediction accuracy than the standard BPNN.
However, the GA-BP III algorithm has the least relative error
among the three algorithms. The least relative error of the
hardness, flexural strength, and fracture toughness for GA-BP
III algorithm is 1.8, 1.4, and 0.7%, respectively, which is
approximately 38, 20, and 32% of that of GA-BP II algorithm
and 20, 19, and 9% of that of standard BPNN. The predicted
data of GA-BP III algorithm better coincide with the experi-
mental data and have high accuracy of prediction. Therefore, it
can well be used in the compositional design of ceramic tool
and die materials with high accuracy of prediction and
reliability.

After the compositional design and fabrication of ZrO2/
TiB2/Al2O3 nano-micro-composite ceramic tool and die mate-
rial, the corresponding microstructural morphologies of the
material with different compositions were analyzed with
scanning electronic microscope (SEM). The typical SEM
morphology of ZrO2/TiB2/Al2O3 nano-micro-composite cera-
mic tool and die material with the optimum compositions is
shown in Fig. 8. It indicated that both TiB2 and Al2O3 grains
were distributed uniformly in the ZrO2 matrix. The fracture
mode of the composite material was the mixture of transgran-
ular and intergranular fracture. While for those materials with
non-optimum compositions, the phenomena of either low
density or abnormally grown grains were usually observed.
Besides the main toughening mechanism of phase transforma-
tion from ZrO2, crack deflection, crack bridging, crack
branching, etc. contributed simultaneously to the enhancement
of the fracture toughness (Ref 24).

The ceramic composites were then used in the friction and
wear tests (Ref 24). Lower coefficient of friction and higher
wear resistance had been achieved compared with that of pure
ZrO2 ceramic. It suggests that the developed ZrO2/TiB2/Al2O3

Fig. 4 The curve of BPNN training target of GA-BP III algorithm

Fig. 5 The curve of BPNN training target of standard BPNN

Fig. 6 The curve of sum-square error and fitness of GA-BP
II algorithm

Fig. 7 The curve of BPNN training target of GA-BP II algorithm
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nano-micro-composite ceramic tool and die material will have
prospective applications in the fields of drawing and extrusion
of non-ferrous metals such as copper and aluminum.

5. Conclusions

With the utilization of GA-BP III algorithm for the
compositional design of nano-micro-composite ceramic tool
and die material, the number of steps of iteration, the elapsed
time, and the MSE can noticeably be reduced. It can avoid the
local minimum problem and can present more accurate and
reliable results. Preparation experiments of ZrO2/TiB2/Al2O3

nano-micro-composite ceramic tool and die material indicate
that the relative error between the experimental and predicted
results of the hardness, flexural strength, and fracture toughness
is 1.8, 1.4, and 0.7%, respectively, for the GA-BP III algorithm
which is the least relative error among the three kinds of
algorithms. The predicted data better coincide with the
experimental data and have high accuracy of prediction.
Therefore, the GA-BP III algorithm is a kind of the fast,
effective, and reliable algorithms in the prediction of mechan-
ical properties of nano-micro-composite ceramic tool and die
materials. It suggests that it can also be effectively applied in
the material design area of other ceramic composites.
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